Derive an expression for the centripetal acceleration of a body in uniform circular motion.

(I assume familiarity with positions represented by vectors and differentiation of trigonometric functions). Consider the coordinates of a point moving in a circle of radius r around the origin. The equation of the circle is (rsin theta)2 +(rcos theta)2 = r2. So the position vector x is (rcos theta; rsin theta) - this is a column vector. So differentiate with respect to time to get tangential velocity dx/dt: (-rsin thetadtheta/dt; rcos thetadtheta/dt). Differentiate again to get acceleration d2x/dt2: (-rcos theta(dtheta/dt)2-rsin thetad2theta/dt2; -rsin theta(dtheta/dt)2+rcos thetad2theta/dt2). Now dtheta/dt is of course constant since it's constant motion, which means d2theta/dt2 = 0! So acceleration is now simply (-rcos theta(dtheta/dt)2; -rsin theta(dtheta/dt)2). We can relate velocity and position as |v|=r(dtheta/dt), and acceleration as a=|v|2/r.

HA
Answered by Hubert A. Physics tutor

3500 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Derive the formula for the maximum kinetic energy of an electron emitted from a metal with work function energy p , that is illuminated by light of frequency f.


Describe how a stationary wave is formed and some of its properties.


Why are neutrinos hard to detect?


Explain what is meant by the term "plastic deformation".


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences