Derive an expression for the centripetal acceleration of a body in uniform circular motion.

(I assume familiarity with positions represented by vectors and differentiation of trigonometric functions). Consider the coordinates of a point moving in a circle of radius r around the origin. The equation of the circle is (rsin theta)2 +(rcos theta)2 = r2. So the position vector x is (rcos theta; rsin theta) - this is a column vector. So differentiate with respect to time to get tangential velocity dx/dt: (-rsin thetadtheta/dt; rcos thetadtheta/dt). Differentiate again to get acceleration d2x/dt2: (-rcos theta(dtheta/dt)2-rsin thetad2theta/dt2; -rsin theta(dtheta/dt)2+rcos thetad2theta/dt2). Now dtheta/dt is of course constant since it's constant motion, which means d2theta/dt2 = 0! So acceleration is now simply (-rcos theta(dtheta/dt)2; -rsin theta(dtheta/dt)2). We can relate velocity and position as |v|=r(dtheta/dt), and acceleration as a=|v|2/r.

Answered by Hubert A. Physics tutor

3481 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Explaining how capacitors work


Why does an ice skater spin faster when they hold in their arms?


In one second a mass of 210 kg of air enters at A. The speed of this mass of air increases by 570 m s–1 as it passes through the engine. Calculate the force that the air exerts on the engine.


How do you combine resistors is series and parallel?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences