Differentiate with respect to x: F(x)=(x^2+1)^2

To differentiate composite functions, (a function within a function) like in this case we need to use the chain rule. We can see that F(x)=f(g(x)) where we let f(x)= (x^2+1)^2 and g(x)= x^2+1. To use the chain rule we need to find f'(x) and g'(x). The derivative of both functions. To find the derivative of f(x) we let u= x^2+1 so f(u) becomes: u^2 so when we differentiate it we get f'(u)= 2u. Now we substitute u back in. So f'(x)=2(x^2+1). And g'(x)= 2x, we just differentiate it normally. Now we put it all together, the chain rule says: F'(x)= f'(g(x))g'(x) so F'(x)= 2(x^2+1)2x = 4x(x^2+1)

LG
Answered by Lorenzo Gabriel S. Maths tutor

3454 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A hollow sphere of radius r is being filled with water. The surface area of a hemisphere is 3pi*r^2. Question: When the water is at height r, and filling at a rate of 4cm^3s^-1, what is dS/dT?


Differentiate tan^2(x) with respect to x


The curve C has the parametric equations x=4t+3 and y+ 4t +8 +5/(2t). Find the value of dy/dx at the point on curve C where t=2.


How do I tell if a curve has a maximum or a minimum?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning