Given a fixed parabola and a family of parallel lines with given fixed gradient, find the one line that intersects the parabola in one single point

Let the parabola be y=x2 and let the family of lines be y=2x+c, in order to study the intersection points we need to consider the second order linear system given by having the two equations above. Hence, we get x2 -2x-c=0 and this equation has one single solution if and only if -c=1.

Therefore, the solution line is y=2x-1

Answered by Francesca T. Maths tutor

2495 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

∫ log(x) dx


Solve the equation tanx/cosx = 1 for 0°<x<360°


Integrate xcos(x)


(A-Level) Find the coordinate of the stationary point of the curve y = 2x + 27/x^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences