Given a fixed parabola and a family of parallel lines with given fixed gradient, find the one line that intersects the parabola in one single point

Let the parabola be y=x2 and let the family of lines be y=2x+c, in order to study the intersection points we need to consider the second order linear system given by having the two equations above. Hence, we get x2 -2x-c=0 and this equation has one single solution if and only if -c=1.

Therefore, the solution line is y=2x-1

Answered by Francesca T. Maths tutor

2653 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express (16x^2 + 4x^3)/(x^3 + 2x^2 - 8x) + 12x/(x-2) as one fraction in its simplest form.


Can you give an example of using the chain rule for differentiation? Example: Let y=(6 + 2x + 2x^2)^3, find dy/dx.


Where do the kinematics equations (SUVAT) come from?


F ind all values of x in the range 0° <= x <= 180° satisfying tan(x+45°)= 8tan(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences