Integrate ln(x) wrt dx

Integrate by parts. First rewrite the integral in the form udv/dx, which is (1)ln(x). Then integrate (1)ln(x) wrt dx by assigning u=ln(x) du/dx=1/x and dv/dx=1 v=x. We can determine the integral of ln(x), using the following formula for integration by parts: integral of udv/dx wrt x = (uv) − (integral of vdu/dx wrt x ). 

ST
Answered by Sathurthini T. Maths tutor

4736 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Mechanics (M1): Particle moving on a straight line with constant acceleration (Relationships of the 5 Key Formulae)


Given the equation 0=5x^2+3xy-y^3 find the value of dy/dx at the point (-2,2)


Integrating (e^x)sin(x)


Given the equation 3x^2 + 4xy - y^2 + 12 = 0. Solve for dy/dx in terms of x and y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning