Integrate ln(x) wrt dx

Integrate by parts. First rewrite the integral in the form udv/dx, which is (1)ln(x). Then integrate (1)ln(x) wrt dx by assigning u=ln(x) du/dx=1/x and dv/dx=1 v=x. We can determine the integral of ln(x), using the following formula for integration by parts: integral of udv/dx wrt x = (uv) − (integral of vdu/dx wrt x ). 

Answered by Sathurthini T. Maths tutor

4086 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If cos(x)= 1/3 and x is acute, then find tan(x).


What is [(x+1)/(3x^(2)-3)] - [1/(3x+1)] in its simplest form?


Differentiate with respect to x: i) y=x^3ln(2x) ii) y=(x+sin(2x))^3


The rate of growth of a population of micro-organisms is modelled by the equation: dP/dt = 3t^2+6t, where P is the population size at time t hours. Given that P=100 at t=1, find P in terms of t.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences