Integrate ln(x) wrt dx

Integrate by parts. First rewrite the integral in the form udv/dx, which is (1)ln(x). Then integrate (1)ln(x) wrt dx by assigning u=ln(x) du/dx=1/x and dv/dx=1 v=x. We can determine the integral of ln(x), using the following formula for integration by parts: integral of udv/dx wrt x = (uv) − (integral of vdu/dx wrt x ). 

Answered by Sathurthini T. Maths tutor

4083 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative of the function y=3x^2e^(2x)sin(x).


1. The curve C has equation y = 3x^4 – 8x^3 – 3 (a) Find (i) d d y x (ii) d d 2 y x 2 (3) (b) Verify that C has a stationary point when x = 2 (2) (c) Determine the nature of this stationary point, giving a reason for your answer.


I can differentiate exponentials (e^x), but how can I differentiate ln(x)?


The line l1 has equation y = −2x + 3. The line l2 is perpendicular to l1 and passes through the point (5, 6). (a) Find an equation for l2 in the form ax + by + c = 0, where a, b and c are integers.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences