Given that y=((4x+1)^3)sin2x. Find dy/dx.

To answer this we will need to use the product rule which is as follows: For y=uv, dy/dx=u'v+uv' where u' is the derivative of u and v' is the derivative of v.

In this case, u= (4x+1)^3 and v= sin2x. u'= 34(4x+1)^2 = 12*(4x+1)^2 and v'= 2cos2x. Therefore dy/dx= u'v+uv'= (12*(4x+1)^2)sin2x + 2((4x+1)^3)*cos2x.

BG
Answered by Benjamin G. Maths tutor

3369 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the exponential curve y(x)=(9e^(7x))/(12e^(2x)) at x=2/5


Solve the equation 2(cos x)^ 2=2-sin x for 0 <=x<=180


Express 4sin(x)+6cos(x) in terms of Rsin(x+a) where R and a are constants to be determined (a should be given in rad).


Solve the equation 3^(5x-2)=4^(6-x), and show that the solution can be written in the form log10(a)/log10(b).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning