Given that y=((4x+1)^3)sin2x. Find dy/dx.

To answer this we will need to use the product rule which is as follows: For y=uv, dy/dx=u'v+uv' where u' is the derivative of u and v' is the derivative of v.

In this case, u= (4x+1)^3 and v= sin2x. u'= 34(4x+1)^2 = 12*(4x+1)^2 and v'= 2cos2x. Therefore dy/dx= u'v+uv'= (12*(4x+1)^2)sin2x + 2((4x+1)^3)*cos2x.

BG
Answered by Benjamin G. Maths tutor

3339 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the Co-ordinates and nature of all stationary points on the curve y=x^3 - 27x, and attempt to sketch the curve


Integrate sinxcosx dx


How do I choose which term do I differentiate/integrate when I am integrating by parts


What is the remainder when you divide 2x^3+7x^2-4x+7 by x^2+2x-1?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning