The infinite series C and S are defined C = a*cos(x) + a^2*cos(2x) + a^3*cos(3x) + ..., and S = a*sin(x) + a^2*sin(2x) + a^3*sin(3x) + ... where a is a real number and |a| < 1. By considering C+iS, show that S = a*sin(x)/(1 - 2a*cos(x) + a^2), and find C.

C + iS = (acos(x) + a^2cos(2x) + a^3cos(3x) + ...) + i( asin(x) + a^2sin(2x) + a^3sin(3x) + ...)

= a(cos(x) + isin(x)) + a^2(cos(2x) + isin(2x)) + a^3(cos(3x) + i*sin(3x)) + ...

= ae^ix + a^2e^i2x + a^3*e^i3x + ...

This is a geometric sequence, with common ratio ae^ix. Using the formula for infinite sum, (S = 1/(a0 - r), where r is the common ratio and a0 is the first term, i.e. ae^ix here) we get after some simplification:

C + iS = (acos(x) - a^2)/(1 - 2acos(x) + a^2) + i(asin(x)/(1 - 2acos(x) + a^2)). Then clearly here C is the real part and S is the imaginary part, so S = (asin(x)/(1 - 2acos(x) + a^2)) as needed and C = (acos(x) - a^2)/(1 - 2acos(x) + a^2).

SF
Answered by Salman F. Further Mathematics tutor

9055 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Unfortunately this box is to small to contain the question so please see the first paragraph of the answer box for the question.


Compute the derivative of arcsin(x).


Find the general solution for the determinant of a 3x3 martix. When does the inverse of this matrix not exist?


How do you plot a complex number in an Argand diagram?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning