The infinite series C and S are defined C = a*cos(x) + a^2*cos(2x) + a^3*cos(3x) + ..., and S = a*sin(x) + a^2*sin(2x) + a^3*sin(3x) + ... where a is a real number and |a| < 1. By considering C+iS, show that S = a*sin(x)/(1 - 2a*cos(x) + a^2), and find C.

C + iS = (acos(x) + a^2cos(2x) + a^3cos(3x) + ...) + i( asin(x) + a^2sin(2x) + a^3sin(3x) + ...)

= a(cos(x) + isin(x)) + a^2(cos(2x) + isin(2x)) + a^3(cos(3x) + i*sin(3x)) + ...

= ae^ix + a^2e^i2x + a^3*e^i3x + ...

This is a geometric sequence, with common ratio ae^ix. Using the formula for infinite sum, (S = 1/(a0 - r), where r is the common ratio and a0 is the first term, i.e. ae^ix here) we get after some simplification:

C + iS = (acos(x) - a^2)/(1 - 2acos(x) + a^2) + i(asin(x)/(1 - 2acos(x) + a^2)). Then clearly here C is the real part and S is the imaginary part, so S = (asin(x)/(1 - 2acos(x) + a^2)) as needed and C = (acos(x) - a^2)/(1 - 2acos(x) + a^2).

SF
Answered by Salman F. Further Mathematics tutor

8478 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove that (AB)^-1 = B^-1 A^-1


Solve the equation 3sinh(2x) = 13 - 3e^(2x), answering in the form 0.5ln(k). where k is an integer


Prove that matrix multiplication is not commutative.


Find the Taylor Series expansion of tan(x) about π/4 up to the term in terms of (x-π/4)^3.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning