Differentiate the function f(x) = 3x^2/sin(2x)

Using the product rule, f=uv, df = (vu'-uv')/v^2. we first set u = 3x^2 and v = sin(2x). u' = 6x, v'=2cos(2x) Therefore, vu' = 6xsin(2x). uv' = 6x^2cos(2x), v^2 = 4cos^2(2x) Therefore the differential is [6xsin(2x) - 6x^2cos(2x)]/[4cos^2(2x)] We can factor out 6x from the top and divide by the 4 on the bottom to give 3x(sin(2x)-xcos(2x))/(2*cos^2(2x))

KS
Answered by Kilian S. Maths tutor

5661 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why do we need the constant of integration?


Find dy/dx if y= sinx/2x+1


A curve has the equation y=x^3+2x+15. Find dy/dx.


A ball is kicked and has an instantaneous velocity of 19.6m/s at an angle of 30 degrees to the horizontal. A target lies flat on the ground in the direction the ball is kicked and lies at a distance of (98/5)*(3^1/2)m. Does the ball land on the target?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences