Differentiate x^3 − 3x^2 − 9x. Hence find the x-coordinates of the stationary points on the curve y = x^3 − 3x^2 − 9x

To differentiate, we bring the power down and decrease the power by 1. So x3 becomes 3x2, -3x2 becomes -6x, and -9x (which can be written as -9x1 ) becomes -9. So y' = 3x2 - 6x - 9 This equation tells us the gradient of the graph for any value of x, and we should be able to recall that at a stationary point, the gradient will be 0. We set y' to 0 and solve for x by factorising. 0 = 3x2 - 6x - 9 = (3x +3)(x - 3) So 3x + 3 = 0, hence x = -1 is a stationary point, and x - 3 = 0, hence x = 3 is a stationary point.

TD
Answered by Tutor105800 D. Maths tutor

10098 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find an angle in a right-angled triangle when you are given two of its side's lengths?


The element of a cone has length L. For what height H (with respect to L) will the volume of the cone be the largest?


Find both stationary points for y= 4x^(3)-3x^(2)-60x+24. Also find the nature of those points.


a) show that (cosx)^2=8(sinx)^2-6sinx can be written as (3sinx-1)^2=2 b)Solve (cosx)^2=8(sinx)^2-6sinx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning