Differentiate x^3 − 3x^2 − 9x. Hence find the x-coordinates of the stationary points on the curve y = x^3 − 3x^2 − 9x

To differentiate, we bring the power down and decrease the power by 1. So x3 becomes 3x2, -3x2 becomes -6x, and -9x (which can be written as -9x1 ) becomes -9. So y' = 3x2 - 6x - 9 This equation tells us the gradient of the graph for any value of x, and we should be able to recall that at a stationary point, the gradient will be 0. We set y' to 0 and solve for x by factorising. 0 = 3x2 - 6x - 9 = (3x +3)(x - 3) So 3x + 3 = 0, hence x = -1 is a stationary point, and x - 3 = 0, hence x = 3 is a stationary point.

Answered by Tutor105800 D. Maths tutor

9386 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Chris claims that, “for any given value of x , the gradient of the curve y=2x^3 +6x^2 - 12x +3 is always greater than the gradient of the curve y=1+60x−6x^2” . Show that Chris is wrong by finding all the values of x for which his claim is not true.


Let f(x)= x^3 -9x^2 -81x + 12. Calculate f'(x) and f''(x). Use f'(x) to calculate the x-values of the stationary points of this function.


Prove that the d(tan(x))/dx is equal to sec^2(x).


How do you find the roots of a cubic equation?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences