Prove by induction the sum of the natural numbers from 1 to n is n(n+1)/2

Need whiteboard throughout to properly answer, so will go through the ideas of what to do:

Take the base case of when n=1, and show that            (sum from 1 to 1) j = n(n+1)/2       is equal to 1.

Take the assumption that this is true for some n=k in the natural numbers. So want to show it's true for n=k+1.

Use the sigma notation to split the sum from 1 to k+1 to the sum from 1 to k, and adding k+1. We have assumed that

(sum from 1 to k) j = k(k+1)/2, so we now have that (sum from 1 to k) j + (k+1) = k(k+1)/2 + (k+1), and we can then show that this is equal to (k+1)(k+2)/2.

So since we have shown that the statement is true for a base case, and that if it is true for n=k, it is also true for n=k+1, then we have proved the statement by the mathematical principle of induction.

OO
Answered by Oisin O. Further Mathematics tutor

2604 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Express f(x) = ln(x+1) as an infinite series in ascending powers of x up to the 3rd power of x


Find the eigenvalues for the matrix (4/2/3,2/7/0,-2/1/8)


How can the integrating factor method be derived to give a solution to a differential equation?


A curve has equation y=(2-x)(1+x)+3, A line passes through the point (2,3) and the curve at a point with x coordinate 2+h. Find the gradient of the line. Then use that answer to find the gradient of the curve at (2,3), stating the value of the gradient


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning