Prove by induction the sum of the natural numbers from 1 to n is n(n+1)/2

Need whiteboard throughout to properly answer, so will go through the ideas of what to do:

Take the base case of when n=1, and show that            (sum from 1 to 1) j = n(n+1)/2       is equal to 1.

Take the assumption that this is true for some n=k in the natural numbers. So want to show it's true for n=k+1.

Use the sigma notation to split the sum from 1 to k+1 to the sum from 1 to k, and adding k+1. We have assumed that

(sum from 1 to k) j = k(k+1)/2, so we now have that (sum from 1 to k) j + (k+1) = k(k+1)/2 + (k+1), and we can then show that this is equal to (k+1)(k+2)/2.

So since we have shown that the statement is true for a base case, and that if it is true for n=k, it is also true for n=k+1, then we have proved the statement by the mathematical principle of induction.

OO
Answered by Oisin O. Further Mathematics tutor

2191 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How would go about finding the set of values of x for which x+4 > 4 / (x+1)?


Let A, B and C be nxn matrices such that A=BC-CB. Show that the trace of A (denoted Tr(A)) is 0, where the trace of an nxn matrix is defined as the sum of the entries along the leading diagonal.


How to multiply and divide by complex numbers


Show that G = {1, -1} is a group under multiplication.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences