Given that x = ln(sec(2y)) find dy/dx

x = ln (sec (2y))

The chain rule states that d/dy f (g (y)) = f'(g(y)). g'(y)

Here g(y) = sec(2y) so g'(y) = 2.sec(2y).tan(2y)

And f(y) = ln (y) so f'(y) = 1 / y

Thus dx/dy = (1 / sec(2y)) . (2.sec(2y).tan(2y)) = 2.tan(2y)

Answered by Dom H. Maths tutor

11634 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express (5sqrt(3)-6)/(2sqrt(3)+3) in the form m+nsqrt(3) where m and n are integers. [Core 1]


Differentiate the following: y = 3x^(1/3) + 2


Integration by parts; ∫e^x sin(x) dx


x is an angle, if 180 > x > 90 and sinx = √2 / 4 what is the value of angle x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences