Given that x = ln(sec(2y)) find dy/dx

x = ln (sec (2y))

The chain rule states that d/dy f (g (y)) = f'(g(y)). g'(y)

Here g(y) = sec(2y) so g'(y) = 2.sec(2y).tan(2y)

And f(y) = ln (y) so f'(y) = 1 / y

Thus dx/dy = (1 / sec(2y)) . (2.sec(2y).tan(2y)) = 2.tan(2y)

DH
Answered by Dom H. Maths tutor

12644 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the coordinates of the point of intersection between the line L:(-i+j-5k)+v(i+j+2k) and the plane π: r.(i+2j+3k)=4.


Evaluate f'(1) for the function f(x) = (x^2 + 2)^5


Use integration by parts to find the integral of xsinx, with respect to x


A curve C has equation: y = x^2 − 2x − 24x^1/2, x > 0; Find (i) dy/dx (ii) d^2y/dx^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning