Given that x = ln(sec(2y)) find dy/dx

x = ln (sec (2y))

The chain rule states that d/dy f (g (y)) = f'(g(y)). g'(y)

Here g(y) = sec(2y) so g'(y) = 2.sec(2y).tan(2y)

And f(y) = ln (y) so f'(y) = 1 / y

Thus dx/dy = (1 / sec(2y)) . (2.sec(2y).tan(2y)) = 2.tan(2y)

DH
Answered by Dom H. Maths tutor

12822 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you differentiate y = 5 x^3 + 1/2 x^2 + 3x -4


Which value of x gives the greatest value of "-x^2+8x-6"


A quantity N is increasing with respect to time, t. It is increasing in such a way that N = ae^(bt) where a and b are constants. Given when t = 0, N = 20, and t = 8, N = 60, find the value: of a and b, and of dN/dt when t = 12


solve the differential equation dy/dx=(3x*exp(4y))/(7+(2x^(2))^(2) when y = 0, x = 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning