Find the area enclosed by the curve y = 3x - x^2 and the x-axis

Start with finding limits by setting 3x - x^2 = 0, then factorise x(3 - x) = 0. Therefore x = 0 or 3. The area is the integral of 3x - x^2 between x = 0 and 3, sub in 3 and 0 into 3(x^2)/2 - (x^3)/3, which gives 3*(3^2)/2 - (3^3)/3 - 0 = 9/2 square units.

SB
Answered by Sam B. Maths tutor

17897 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate 6x^2


What does dy/dx represent?


Solve the equation sin2x = tanx for 0° ≤ x ≤ 360°


Given y=(1+x^3)^0.5, find dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning