Find the area enclosed by the curve y = 3x - x^2 and the x-axis

Start with finding limits by setting 3x - x^2 = 0, then factorise x(3 - x) = 0. Therefore x = 0 or 3. The area is the integral of 3x - x^2 between x = 0 and 3, sub in 3 and 0 into 3(x^2)/2 - (x^3)/3, which gives 3*(3^2)/2 - (3^3)/3 - 0 = 9/2 square units.

SB
Answered by Sam B. Maths tutor

16883 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that the square of an odd integer is odd.


How to find the derivative of arctan(x)


Differentiate the following, y=(2x-4)^3


How should I aproach a connected rates of change question.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences