Differentiate [ x.ln(x)] with respect to x

The product rule is used to differentiate this since we are trying to differentiate the product of 2 parts--x and ln(x)So using the product rule which is d/dx=u.(dv/dx) +v.(du/dx)let u=x and v=ln(x)then du/dx=1 and dv/dx=1/x
So, d/dx[x.ln(x)]= x . 1/x + ln(x).1d/dx[x.ln(x)]=1 +ln(x)=ln(x) +1

Answered by Omolola L. Maths tutor

3592 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find the limit of a sequence that is expressed as a fraction?


Express (2x-14)/(x^2+2x-15) as partial fractions


Let f(x) = 5x^4 + 6x^3 + 3, find dy/dx at x = 3


A particle, P, moves along the x-axis. The displacement, x metres, of P is given by 0.5t^2(t^2 - 2t + 1), when is P instantaneously at rest


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences