Differentiate [ x.ln(x)] with respect to x

The product rule is used to differentiate this since we are trying to differentiate the product of 2 parts--x and ln(x)So using the product rule which is d/dx=u.(dv/dx) +v.(du/dx)let u=x and v=ln(x)then du/dx=1 and dv/dx=1/x
So, d/dx[x.ln(x)]= x . 1/x + ln(x).1d/dx[x.ln(x)]=1 +ln(x)=ln(x) +1

OL
Answered by Omolola L. Maths tutor

4380 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate x^2 + xy + y^2 =1 implicitly.


How do I find the maximum/minimum of a curve?


By expressing cos(2x) in terms of cos(x) find the exact value of the integral of cos(2x)/cos^2(x) between the bounds pi/4 and pi/3.


The line AB has equation 5x + 3y + 3 = 0. The line AB is parallel to the line y = mx + 7. Find the value of m.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning