There are three methods to solve these types of silmultaneous equation questions, substitutution, elimination and matrices. In this example we use substitution and elimination.Elimination example.Eq1). 7x+5y-3z =16Eq2). 3x-5y+2z=-8Eq3). 5x+3y-7z=0
Eq4). Eq1 + Eq2 (chosen on inspection because +5y and -5y will cancel each other out)Eq4). 10x-z=8
Now we need another equation with just two variables.
To remove the x values when adding equations 2 and 3 we need to multiple each equation. Eq2. contains -5y, Eq3. contains +3y. Therefore multiplying Eq2. by 3 and Eq3. by 5. Will give us +15y and -15y respectively.
Eq5). 3(Eq2) + 5(Eq3)Eq5). 3[3x-5y+2z=-8] + 5[5x+3y-7z=0]Eq5). [9x-15y+6z=-24] + [25x+15y-35z=0]Eq5). 34x-29z=-24
Now we have two equations with only two variables.Eq4). 10x-z=8Eq5). 34x-29z=-24
To solve for x through substitution.Eq4). Can be rearranged to... z = 10x-8Which can be substituted into Eq5). making Eq6).Eq6). 34x - 29(10x-8) = -24Eq6). 34x - 290x - - 232 = -24Eq6). -256x + 232 = -24Eq6). -256x = -256Therefore dividing by -256, x = 1.
Substituting back into the rearranged Eq4). z = 10x-8 where x=1.z = 10(1) -8z = 10-8z = 2
To work out the y variable we will go back to the original Eq1) and solve with the values for x and z.Eq1). 7x+5y-3z =16, where x=1 and z=27(1) + 5y - 3(2) = 16,7 + 5y - 6 = 16,1 + 5y = 16,5y = 15,y=3
Final Answer, x=1, y=3, z=2