7x+5y-3z =16, 3x-5y+2z=-8, 5x+3y-7z=0. Solve for x,y and z.

There are three methods to solve these types of silmultaneous equation questions, substitutution, elimination and matrices. In this example we use substitution and elimination.Elimination example.Eq1). 7x+5y-3z =16Eq2). 3x-5y+2z=-8Eq3). 5x+3y-7z=0
Eq4). Eq1 + Eq2 (chosen on inspection because +5y and -5y will cancel each other out)Eq4). 10x-z=8
Now we need another equation with just two variables.
To remove the x values when adding equations 2 and 3 we need to multiple each equation. Eq2. contains -5y, Eq3. contains +3y. Therefore multiplying Eq2. by 3 and Eq3. by 5. Will give us +15y and -15y respectively.
Eq5). 3(Eq2) + 5(Eq3)Eq5). 3[3x-5y+2z=-8] + 5[5x+3y-7z=0]Eq5). [9x-15y+6z=-24] + [25x+15y-35z=0]Eq5). 34x-29z=-24
Now we have two equations with only two variables.Eq4). 10x-z=8Eq5). 34x-29z=-24
To solve for x through substitution.Eq4). Can be rearranged to... z = 10x-8Which can be substituted into Eq5). making Eq6).Eq6). 34x - 29(10x-8) = -24Eq6). 34x - 290x - - 232 = -24Eq6). -256x + 232 = -24Eq6). -256x = -256Therefore dividing by -256, x = 1.
Substituting back into the rearranged Eq4). z = 10x-8 where x=1.z = 10(1) -8z = 10-8z = 2
To work out the y variable we will go back to the original Eq1) and solve with the values for x and z.Eq1). 7x+5y-3z =16, where x=1 and z=27(1) + 5y - 3(2) = 16,7 + 5y - 6 = 16,1 + 5y = 16,5y = 15,y=3
Final Answer, x=1, y=3, z=2

Answered by Holly May B. Maths tutor

7868 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the general solution to the differential equation dy/dx = y/(x+1)(x+2)


Integrate ln(x) by parts then differentiate to prove the result is correct


Integrate (x+3)/(x(x-3)) with respect to x


y = 4x/(x^2+5). a) Find dy/dx, writing your answer as a single fraction in its simplest form. b) Hence find the set of values of x for which dy/dx < 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences