Why do melting points decrease down the group 1 and increade down the group 7? (core syllabus: Periodicity)

Elements in the group one (i.e. alkali metals from lithium to francium) exhibit metallic bonding: the positive nuclei are held together thanks to the attraction to delocalised electrons. As the number of electron shells increases down the group, and consequently the atomic radii get bigger, the attraction between the nuclei and outer shell (valence) electrons decreases. Hence, the bonds are weaker and less energy is required to break them.

Elements in the group seven (i.e. the halides form fluorine to iodine) normally form diatomic covalently bound molecules. The only type of interaction between them are the London dispersion forces (momentary dipole interactions). The magnitude of London forces is proportional to the mass of the molecules, so as the molecular weights of the halides increase down the group, more energy is required to break the interactions between them.

Answered by Paulina M. Chemistry tutor

66276 Views

See similar Chemistry IB tutors

Related Chemistry IB answers

All answers ▸

List the following compounds in order of increasing acidity in aqueous solution, giving reasons for your choices: HCl, HI, HBr, HF.


What are the optimal conditions for the Haber Process N2(g) + 3H2(g) <--> 2NH3(g)? Use Le Chatelier's principle to derive your answer.


Why is there a significant difference between the radii of first and second row transition metals, where as no difference (or even a decrease) is observed between the second and third rows?


Hydrogen bromide forms a strong acid when dissolved in water whereas hydrogen fluoride forms a weak acid. Distinguish between the terms strong acid and weak acid. State equations to describe the dissociation of each acid in aqueous solution. [3]


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences