What is the minimum frequency of electromagnetic radiation needed for a photon to ionise an atom of sodium? ( An atom of sodium has an ionisation energy of 5.15 eV.)

First, let's define what the ionisation energy is. The ionisation energy is the minimum amount of energy required to remove an electron from the ground state of an atom. That means, if we give an electron in the sodium atom enough energy (using light or heat for example) we can actually cause it to be ejected completely from the atom.The question asks, what frequency of electromagnetic radiation (light) do we need to achieve this? We are told that an atom of sodium has an ionisation energy of 5.15 eV (electron volts - a unit of energy), and therefore to remove the electron using light, the photon must also have this amount of energy (or more!). We use the famous expression for the energy of a photon: E = hf where h is Planck's constant, f is the frequency of the photon and E is the energy. Rearranging the equation for the frequency gives: f = E/h. Now, subbing in the values: f = (5.15 x 1.6 x10^-19)/6.63x10^-34 gives the final answer of f = 1.24 x 10^15 Hz. It is important to remember to multiply the energy in eV by the electronic charge to convert it into Joules (so that our equation is all in SI units).(NB. This is a good question because it brings up a number of interesting concepts, such as the quantisation of light, photon absorption/ionisation which has a number of interesting applications that could be discussed with the student to give a deeper understanding and appreciation of the science and finally unit conversions from eV to Joules.)

Answered by Angus M. Physics tutor

11341 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How can we explain the standing waves on a string?


How do capacitors work and what are its units?


In an electric propulsion system, alpha particles are accelerated through a potential difference of 100kV at an average rate of 10^20 alpha particles per second. Calculate the average thrust the system can provide.


2 Capacitors (c1 = 500mf) and (c2=300mf), are connected in parallel to a 10v d.c supply. Calculate the total capacitance of the circuit, and hence the total energy stored in the capacitors.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences