Using Algebra show that part of the line 3x + 4y = 0 is a diameter of the circle with equation (x^2) + (y^2) = 25

To show that the line is a diameter of the circle you muct show that it goes through the centre of the circle1) finding the centre of the circle. The general eqn is (x-a)2 + (y-b)2 = r2 , where r is the radius and (a, b) is the centre
to get x2 + y2 = 25 , centre must be the origin -> (x-0)2 + (y -0)2 = 25 x2 - 0x + 0 + y2 -0y + 0 = x2 + y2
2) then to prove it goes through line, sub (0, 0) into line equation 3x + 4y =0 -> (3x0) + (4x0) = 0
the line 3x + 4y = 0 goes through the centre of the circle and therefore must be a diameter

EL
Answered by Emma L. Maths tutor

7466 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the volume and surface area of a cylinder, of length 20cm and radius 5cm.


1 a. If x=6a+3 and a is 4 what is x? b. Make a the subject of the formula.


The diagram shows the position of two ships, A and B, and a lighthouse L. Ship A is 5km from L on a bearing of 070° from L. Ship B is 3km from L on a bearing of 210° from L. Find the distance between A and B correct to 3.s.f.


A is the point with coordinates (1, 3) B is the point with coordinates (–2, –1) The line L has equation 3y = 4 – 2x Is line L parallel to AB?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences