A curve is defined for x > 0. The gradient of the curve at the point (x,y) is given by dy/dx = x^(3/2)-2x. Show that this curve has a minimum point and find it.

This is a typical exam style question, taken from an AQA paper. This question is testing your knowledge of stationary points and differentiation. Step 1: Find all stationary points by setting the first derivate to 0, and solving the equation. Step 2: Determine what type of stationary points those we found in step 1 are. This is done by obtaining the second derivative, and substituting in the x values found in step 1. (Optional step 3: interpretationFirst derivative - gradientSecond derivative - rate of change of gradient)

YC
Answered by Yishuang C. Maths tutor

4693 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation x = (y+5)ln(2y-7); (i) Find dx/dy in terms of y; (ii) Find the gradient of the curve where it crosses the y-axis.


Solve the inequality x^2 > 3(x + 6)


What is the best way to revise for a Maths A-level?


What is the point of differentiation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning