The curve C has the equation 4x^2 - y^3 - 4xy + 2y = 0 . The point P with coordinates (-2, 4) lies on C. Find the exact value of dy/dx at the point P.

4x2 - y3 - 4xy + 2y = 0To find dy/dx we need to differentiate all the terms in the equation. As you may notice the x's and y's are mixed together so we will have to use implicit differentiation. Since we are differentiating in terms of x, all of the x terms can be differentiated as usual, whilst the y terms will be followed by a dy/dx. The first two terms are more straight forward to deal with: d(4x2)/dx = 2 * 4 * x = 8xd(y3) / dx = 3 * y2* dy/dx = 3y2dy/dx[Term 3] For the composite term, 4xy, we will be using the product function rule: y = f(x)g(x), y' = f'(x)g(x) + f(x)g'(x). So: d(4xy)/dx = 41y + 4x1dy/dx = 4y + 4x dy/dx.[Term 4] In order to differentiate the 2y, we will be using the general rule for differentiating exponents which is y = af(x), y' = af(x)* f'(x) ln(a). So : d(2y)/ dx = 2y 1 dy/dx * ln2 = 2y ln2 *dy/dx .Combining all of our work from above:8x - (3y2dy/dx ) - ( 4y + 4xdy/dx) + ln2(2y*dy/dx) = 08x - 3y2dy/dx - 4y - 4xdy/dx + ln2(2y*dy/dx) = 0 Now we have the differentiated equation so we can just plug in the coordinate values into x and y! 8(-2) - 3(4)2*dy/dx - 4(4) - 4(-2)*dy/dx + ln2(24*dy/dx) = 0 Rearranging everything in terms of dy/dx:dy/ dx = - 32 / (40 - 16ln2)

Answered by Esther M. Maths tutor

9261 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find a solution for the differential equation dy/dx=exp(-y)*sin2x which passes through the origin.


What is the equation of the tangent at the point (2,1) of the curve with equation x^2 + 3x + 4.


What is a confidence interval?


What is a derivative?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences