Find an expression in terms of powers of cos(x) for cos(5x)

De Moivre's theorem states that eix= cos(x) + isin(x) or that ei5x= cos(5x)+ isin(5x). If the real components of both sides of this equation is taken we can see that : cos(5x) = Re[ei5x ] where Re means take the real component of
Also ei5x= eix*5 =(cos(x) + isin(x))5 using laws of index multiplication.
Therefore cos(5x) = Re[(cos(x) + isin(x))5 ]For easy of writing let us use notation c= cos(x) and s= sin(x). We can thus write cos(5x) =Re[(c+is)5]
Expanding the bracket using binomial theorem cos(5x) = c5-10c3s2+5cs4
Pythagoras's identity states sin2x + cos2x =1Rearranging we can write s2=1-c2
Substituting this expression for s2 we get cos(5x) = c5-10c3(1-c2)+5c(1-c2)2Expanding the brackets and gathering like powers of cos xwe get cos(5x)= 16c5-20c3+5cChanging back notation we can writecos(5x)= 16cos5(x)-20cos3(x)+5cos(x)

AA
Answered by Arnav A. Maths tutor

6138 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The point on the circle x^2+y^2+6x+8y = 75 which is closest to the origin, is at what distance from the origin? (Taken from an MAT paper)


The straight line with equation y = 3x – 7 does not cross or touch the curve with equation y = 2px^2 – 6px + 4p, where p is a constant. Show that 4p^2 – 20p + 9 < 0.


Given y = 2x(x2 – 1)5, show that (a) dy/dx = g(x)(x2 – 1)4 where g(x) is a function to be determined. (b) Hence find the set of values of x for which dy/dx > 0


For sketching the graph of the modulus of f(x) (in graph transformations), why do we reflect in the x-axis anything that is below it?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences