find all the roots to the equation: z^3 = 1 + i in polar form

1st write 1+ i in polar form, sketch a diagram to find the angle ( =pi/4) and find the modulus ( sqrt(2))z^3 = Sqrt(2) E^ipi/4This is true for all equivalent solutions (add 2kpi) z^3 = sqrt(2)e^(pi/4 +2kpi)iUse De moivres theorem: z = 2^(1/6) e^(pi/12 +2kpi/3)iThis is an algebraic equation, so has 3 solutions (since z^3 is the highest power) answers are usually given with angles in range -pi < x < pi. So our solutions correspond to k = 0, 1, -1z = 2^1/6 e^ipi/12 , 2^1/6 e^i3pi/4 , 2^1/6 e^-i7pi/12

Related Further Mathematics A Level answers

All answers ▸

A spring with a spring constant k is connected to the ceiling. First a weight of mass m is connected to the spring. Deduce the new equilibrium position of the spring, find its equation of motion and hence deduce its frequency f.


Find all of the roots of unity, Zn, in the case that (Zn)^6=1


How do you differentiate arctan(x)?


Cube roots of 8?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences