find all the roots to the equation: z^3 = 1 + i in polar form

1st write 1+ i in polar form, sketch a diagram to find the angle ( =pi/4) and find the modulus ( sqrt(2))z^3 = Sqrt(2) E^ipi/4This is true for all equivalent solutions (add 2kpi) z^3 = sqrt(2)e^(pi/4 +2kpi)iUse De moivres theorem: z = 2^(1/6) e^(pi/12 +2kpi/3)iThis is an algebraic equation, so has 3 solutions (since z^3 is the highest power) answers are usually given with angles in range -pi < x < pi. So our solutions correspond to k = 0, 1, -1z = 2^1/6 e^ipi/12 , 2^1/6 e^i3pi/4 , 2^1/6 e^-i7pi/12

Related Further Mathematics A Level answers

All answers ▸

A curve has equation y=(2-x)(1+x)+3, A line passes through the point (2,3) and the curve at a point with x coordinate 2+h. Find the gradient of the line. Then use that answer to find the gradient of the curve at (2,3), stating the value of the gradient


What are Taylor series used for?


Prove, by induction, that 4^(n+1) + 5^(2n-1) is always divisible by 21


Calculate the value of the square root of 3 to four decimal places using the Newton-Raphson process


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences