Two numbers add to make 1000. What would they have to be to maximise their product?

We can write the two numbers as x and 1000-x, because x+(1000-x) = 1000 for any x we pick. Now we want to maximise the product x(1000-x); expanding the brackets gives us 1000x-x2 which is easier to work with for us. I'm going to call this f(x).To maximise a function, you need to find its critical points and then check whether they are maxima or minima. Remember that critical points are points where the gradient is 0 (ie when the derivative is 0), and you can check the nature of a critical point by finding the sign of the second derivative. This means we can use the gradient function dy/dx to find our values for x.Let's differentiate f(x):
dy/dx = 1000-2xIf dy/dx = 0, then 1000-2x = 0So 2x = 1000, ie x = 500 and this is the only critical point.Checking the second derivative:d2y/dx2 = -2 < 0, so the point is a maximum.
Finally we check that the answer makes sense: 500(1000-500) = 5002 = 250000 which is very large, so our answer looks correct.You could also do this problem by completing the square, or by drawing the graph of f(x) = x(1000-x) and finding the maximum point. Try it!

Answered by Ankur D. Maths tutor

4991 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the exact answer to (1^3 + 2^3 + 3^3)^(0.5) ?


How do I use the chain rule for differentiation?


A curve with equation y = f(x) passes through the point (4,25). Given that f'(x) = (3/8)*x^2 - 10x^(-1/2) + 1, find f(x).


Given that y = x^4 tan(2x), find dy/dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences