Use De Moivre's Theorem to show that if z = cos(q)+isin(q), then (z^n)+(z^-n) = 2cos(nq) and (z^n)-(z^-n)=2isin(nq).

De Moivre's Theorem states that if z = cos(q)+isin(q), then

zn = (cos(q)+isin(q))n = cos(nq)+isin(nq)

But then 

z-n = cos(-nq)+isin(-nq).

Now, cos(-p)=cos(p), as cosine is a symmetric (even) function, and sin(-p)=-sin(p), as sine is an anti-symmetric (odd) fuction. Thus,

z-n  = cos(nq)-isin(nq).

The rest is just algebra:

zn+z-n = [cos(nq)+isin(nq)]+[cos(nq)-isin(nq)] = 2cos(nq).

zn-z-n = [cos(nq)+isin(nq)]-[cos(nq)-isin(nq)] = 2isin(nq).

Related Further Mathematics A Level answers

All answers ▸

The plane Π contains the points (1, 2, 3), (0, 1, 2) and (2, 3, 0). What is the vector equation of the plane? and what is the cartesian equation of the plane?


How do you find the square roots of a complex number?


How do I prove that the differential of coshx is equal to sinhx?


Integrate xsin(x).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences