De Moivre's Theorem states that if z = cos(q)+isin(q), then
zn = (cos(q)+isin(q))n = cos(nq)+isin(nq)
But then
z-n = cos(-nq)+isin(-nq).
Now, cos(-p)=cos(p), as cosine is a symmetric (even) function, and sin(-p)=-sin(p), as sine is an anti-symmetric (odd) fuction. Thus,
z-n = cos(nq)-isin(nq).
The rest is just algebra:
zn+z-n = [cos(nq)+isin(nq)]+[cos(nq)-isin(nq)] = 2cos(nq).
zn-z-n = [cos(nq)+isin(nq)]-[cos(nq)-isin(nq)] = 2isin(nq).
15279 Views
See similar Further Mathematics A Level tutors