Find the coordinates of the stationary point of the graph y = 3x^2 - 12x

Firstly, we need to differentiate the equation to find an equation for the gradient of the line.dy/dx = 6x-12We know the original graph was quadratic, and therefore only has one stationary point. This is when the gradient is equal to 0, and so we can set dy/dx to 0 to find this coordinate.6x-12=0 6x=12x=2We can then find the y coordinate by substituting into the original equation:3*(2)2 -12*2=12-24=-12So the stationary point is at (2, -12)

Answered by Jack M. Maths tutor

5572 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area between the positive x axis and the line given by y=-(x^2)+2x


How do I find the equation of the tangent to y = e^(x^2) at the point x = 4?


A curve is defined by the parametric equations x = 3 - 4t, and y = 1 + 2/t. Find dy/dx in terms of t.


How can I demonstrate that (sin(T)+cos(T))(1-sin(T)cos(T))=(sin(T))^3+(cos(T))^3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences