Use the substitution u=x^2-2 to find the integral of (6x^3+4x)/sqrt( x^2-2)

First use the substitution to find du/dx which is 2x. From this we now know that dx= du/2x (just re-arranging.) Substituting that into the integral we now get (6x3+4x)/ (sqrt (u) x 2x) du. Cancelling out the 2x we now have (3x2+2)/ sqrt (u) du. This is equal to (3u+8)/ sqrt(u) du using the original definition of u. This is equal to 3u0.5+ 8u-0.5 du. Integrating this we get 2u1.5 + 16u0.5+ c and to get the final answer we just substitute for u.

Answered by Khalil S. Maths tutor

8489 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the equation of a tangent to a curve at a certain point, from the equation of the curve?


Find the first differential with respect to x of y=tan(x)


A line runs between point A(5,9) and B(11,1). Find the equation of the line. Point C lies on the line between A and B. The line with equation 2y=3x+12 also crosses through point C. Find the x coordinate of Point C.


Prove by contradiction that sqrt(3) is irrational. (5 marks)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences