Use the substitution u=x^2-2 to find the integral of (6x^3+4x)/sqrt( x^2-2)

First use the substitution to find du/dx which is 2x. From this we now know that dx= du/2x (just re-arranging.) Substituting that into the integral we now get (6x3+4x)/ (sqrt (u) x 2x) du. Cancelling out the 2x we now have (3x2+2)/ sqrt (u) du. This is equal to (3u+8)/ sqrt(u) du using the original definition of u. This is equal to 3u0.5+ 8u-0.5 du. Integrating this we get 2u1.5 + 16u0.5+ c and to get the final answer we just substitute for u.

KS
Answered by Khalil S. Maths tutor

10121 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A circle with centre C(2, 3) passes through the point A(-4,-5). (a) Find the equation of the circle in the form (x-a)^2 + (y-b)^2=k


Find the integral of e^3x/(1+e^x) using the substitution of u=1+e^x


Line AB has equation 6x + y - 4 = 1. AB is perpendicular to the line y = mx + 1, find m.


How do you find the x co-ordinates of the stationary points of a curve with the equation y = 10x - 2x^2 - 2x^3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning