Using Newton's law of gravitation, derive a suitable formula for the escape velocity of an object at Earth's surface.

Newton's law of gravitation is;
F = GMm/(r2)
Where G is the Universal Gravitational constant, M is the mass of Earth, m is the mass of the object and r is the radius of Earth (no values are needed for this as we are simply deriving a formula, not working out a solution)
We can equate this force to the centripetal force experienced by an object at Earth's surface. This is because the centripetal force is what keeps an object in circular motion, acting towards the centre of the circle. It can be thought of as the force pulling us in toward the centre of the Earth, which we know is gravity so therefore is the same as the force given in Newtons law.
F = m(v2)/r (centripetal force)
Therefore;
GMm/(r2) = m(v2)/r
Dividing by m and multiplying by r
GM/r = (v2)
v = (GM/r)1/2where v is the escape velocity

CM
Answered by Charlie M. Physics tutor

5880 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

When a 470 micro farad capacitor is discharged through a fixed resistor R, the pd across it decreases by 80% in 45 s. Calculate the time constant of the circuit


What's the difference between a bayron and a meson?


Two immobile point charges Q1 and Q2 of values +q and +3q respectively are some distance apart. Q3, with value +2q is placed between them and does not move. What is the ratio of the distance between Q3 and Q2 to the distance between Q1 and Q3?


A conical pendulum is a mass suspended from a point that traces out a horizontal circle. By balancing the weight with the tension in the string, determine the speed of the bob.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning