Using Newton's law of gravitation, derive a suitable formula for the escape velocity of an object at Earth's surface.

Newton's law of gravitation is;
F = GMm/(r2)
Where G is the Universal Gravitational constant, M is the mass of Earth, m is the mass of the object and r is the radius of Earth (no values are needed for this as we are simply deriving a formula, not working out a solution)
We can equate this force to the centripetal force experienced by an object at Earth's surface. This is because the centripetal force is what keeps an object in circular motion, acting towards the centre of the circle. It can be thought of as the force pulling us in toward the centre of the Earth, which we know is gravity so therefore is the same as the force given in Newtons law.
F = m(v2)/r (centripetal force)
Therefore;
GMm/(r2) = m(v2)/r
Dividing by m and multiplying by r
GM/r = (v2)
v = (GM/r)1/2where v is the escape velocity

CM
Answered by Charlie M. Physics tutor

5708 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

In one second a mass of 210 kg of air enters at A. The speed of this mass of air increases by 570 m s–1 as it passes through the engine. Calculate the force that the air exerts on the engine.


What is an inertial frame of reference?


A 4 metre long bar rotates freely around a central pivot. 3 forces act upon it: 7N down, 2m to the left of the pivot; 8N up, 1m to the left of the pivot; 4N up, 1m to the right of the pivot. Apply one additional force to place the bar in equilibrium.


A child is standing on a walkway that is moving at 2 metres per second and decides to turn around and walk back to the start at 2 metres per second. Explain why the child cannot reach the start of the walkway at this speed.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning