Using Newton's law of gravitation, derive a suitable formula for the escape velocity of an object at Earth's surface.

Newton's law of gravitation is;
F = GMm/(r2)
Where G is the Universal Gravitational constant, M is the mass of Earth, m is the mass of the object and r is the radius of Earth (no values are needed for this as we are simply deriving a formula, not working out a solution)
We can equate this force to the centripetal force experienced by an object at Earth's surface. This is because the centripetal force is what keeps an object in circular motion, acting towards the centre of the circle. It can be thought of as the force pulling us in toward the centre of the Earth, which we know is gravity so therefore is the same as the force given in Newtons law.
F = m(v2)/r (centripetal force)
Therefore;
GMm/(r2) = m(v2)/r
Dividing by m and multiplying by r
GM/r = (v2)
v = (GM/r)1/2where v is the escape velocity

Answered by Charlie M. Physics tutor

4756 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How can you tell if a reaction will happen?


A bullet is fired horizontally from a gun at a height of 1.5m at 280m/s. Calculate the time taken for it to hit the ground. A second bullet is fired from an adjacent gun at 370m/s. Calculate the distance it travel before the first bullet hits the ground.


Find an expression for the escape velocity of a test object.


Describe and explain the first stages of the life cycle of a star before it reaches the main sequence.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences