Using Newton's law of gravitation, derive a suitable formula for the escape velocity of an object at Earth's surface.

Newton's law of gravitation is;
F = GMm/(r2)
Where G is the Universal Gravitational constant, M is the mass of Earth, m is the mass of the object and r is the radius of Earth (no values are needed for this as we are simply deriving a formula, not working out a solution)
We can equate this force to the centripetal force experienced by an object at Earth's surface. This is because the centripetal force is what keeps an object in circular motion, acting towards the centre of the circle. It can be thought of as the force pulling us in toward the centre of the Earth, which we know is gravity so therefore is the same as the force given in Newtons law.
F = m(v2)/r (centripetal force)
Therefore;
GMm/(r2) = m(v2)/r
Dividing by m and multiplying by r
GM/r = (v2)
v = (GM/r)1/2where v is the escape velocity

Answered by Charlie M. Physics tutor

4755 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the critical angle of a beam of light leaving a transparent material with a refractive index of 2?


Explaining how capacitors work


For 100ml of a liquid with a mass density of 1(kg m^-3), and a specific heat capacity of 2(kJ kg^-1 K^-1), how much energy is required to increase the temperature of the liquid by 4 degrees celsius. Assume no heat loss and that the liquid does not boil.


Calculate the threshold frequency for a metal with a work function of 3eV


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences