Solve the simultaneous equations: 2x + y = 18, x - y =6.

There are 2 different ways to approach solving simultaneous equations: 1) making x or y the subject of one of the equations.2) addition or subtraction method.In this section, I will explain the first method. So firstly, I'm going to refer to 2x+y=18 as equation 1, and x-y=6 as equation 2. Then you make either x or y the subject of one of the equations. In this case, it is easiest to make x the subject of equation 2. This gives x= 6+y. You then can sub (6+y) which is equal to x, into equation 1, which gives 2(6+y)+y=18. You then expand the brackets to give 12+2y+y=18, and simplify to give 3y=6, which means y=2. We can then sub this value of y straight into the rearranged form of equation 2, x=6+y, to give x=8. Sub both values back into both of the original equations to ensure the values for x and y are both correct.

Answered by Jamini G. Maths tutor

14120 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve x^2-x-12=0


Solve( 3x−2)/4 −(2x+5)/3= (1−x )/6


A teacher gives her students a maths test and they receive the scores: 4, 4, 7, 3, 9, 10, 5, 8. What was the mean score of the class?


A ladder 6.8m long is leaning against a wall, the foot of the ladder is 1.5m from the wall, find the height that the ladder reaches up the wall.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences