Binomially expand the equation (2+kx)^-3

(2+kx)-3 = (2-3)(1+kx/2)-3 = (2-3)(1+(-3)(kx/2) + [(-3)(-4)]/2! (kx/2)2 + [(-3)(-4)(-5)]/3! (kx/2)3 +... )
= 1⁄8 [1 -(3kx/2) + (12⁄2 k2x2/4) + (60⁄6 k3x3/8) + ...]
= 1⁄8 [1 - (3⁄2 kx) + ( 3⁄2 k2x2) + (5⁄4 k3x3) + ...]
= 1⁄8 - 3⁄16 kx + 3⁄16 k2x2 + 5⁄32 k3x3

Answered by Christopher H. Maths tutor

7500 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has an equation of y = 20x - x^2 - 2x^3, with one stationary point at P=-2. Find the other stationary point, find the d^2y/dx^2 to determine if point P is a maximum or minium.


Given that y=x^3 +2x^2, find dy/dx . Hence find the x-coordinates of the two points on the curve where the gradient is 4.


Locate the position and the nature of any turning points in the function: 2x^3 - 9x^2 +12x


What is the integral of sin(3x) cos(5x)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences