Binomially expand the equation (2+kx)^-3

(2+kx)-3 = (2-3)(1+kx/2)-3 = (2-3)(1+(-3)(kx/2) + [(-3)(-4)]/2! (kx/2)2 + [(-3)(-4)(-5)]/3! (kx/2)3 +... )
= 1⁄8 [1 -(3kx/2) + (12⁄2 k2x2/4) + (60⁄6 k3x3/8) + ...]
= 1⁄8 [1 - (3⁄2 kx) + ( 3⁄2 k2x2) + (5⁄4 k3x3) + ...]
= 1⁄8 - 3⁄16 kx + 3⁄16 k2x2 + 5⁄32 k3x3

CH
Answered by Christopher H. Maths tutor

9428 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solving harder exponential equations, e.g. 5/[exp(x) + 6exp(-x)] - 1 = 0 . CORE MATHS.


Use the substition u = cos(x) to find the indefinite integral of -12sin(x)cos^3(x) dx


Find the derivative of sin^2(x)


What is a radian?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning