Using Newton's law of universal gravitation, show that T^2 is proportional to r^3 (where T is the orbital period of a planet around a star, and r is the distance between them).

Newton's law of gravitation is: FG=(GMm)/(r2).First of all, it's a good idea to draw a diagram of the planet and star, labelling the directions of the centripetal force and and the planet's velocity in particular, along with anything else that helps visualise the question. We know that the equation for centripetal force is FC=mω2r (from circular motion). Since this centripetal force FC and the gravitational force FG point in the same direction (from the planet to the star), we can equate them!
This gives us: (GMm)/(r2) = mω2rSubstituting in ω=2π/T, we get: (GMm)/(r2) = (4π2mr)/(T2)We can see that the two 'm's cancel out, and the 'r's combine to make r3.Do a bit of rearranging: T2 =(4π2r3)/(GM)There it is! T2 is proportional to r3; this is known as Kepler's 3rd Law of planetary motion.

JB
Answered by Jake B. Physics tutor

4049 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

what depends if the universe is expanding or not


By considering Newton's second law and his law of gravitation, derive an expression for gravitational field strength g in terms of its mass, m, the distance from its center of mass, r, and the gravitational constant, G.


There is a point between the Moon and the Earth where the gravitational attractions are equal and opposite. How much further is this point from the Earth than the Moon


Given that z = 6 is a root of the cubic equation z^3 − 10z^2 + 37z + p = 0, find the value of p and the other roots.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning