Using Newton's law of universal gravitation, show that T^2 is proportional to r^3 (where T is the orbital period of a planet around a star, and r is the distance between them).

Newton's law of gravitation is: FG=(GMm)/(r2).First of all, it's a good idea to draw a diagram of the planet and star, labelling the directions of the centripetal force and and the planet's velocity in particular, along with anything else that helps visualise the question. We know that the equation for centripetal force is FC=mω2r (from circular motion). Since this centripetal force FC and the gravitational force FG point in the same direction (from the planet to the star), we can equate them!
This gives us: (GMm)/(r2) = mω2rSubstituting in ω=2π/T, we get: (GMm)/(r2) = (4π2mr)/(T2)We can see that the two 'm's cancel out, and the 'r's combine to make r3.Do a bit of rearranging: T2 =(4π2r3)/(GM)There it is! T2 is proportional to r3; this is known as Kepler's 3rd Law of planetary motion.

Answered by Jake B. Physics tutor

2708 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A student is measuring the acceleration due to gravity, g. They drop a piece of card from rest, from a vertical height of 0.75m above a light gate. The light gate measures the card's speed as it passes to be 3.84 m/s. Calculate an estimate for g.


A ball is dropped from a 5.0m high window. Assuming air resistance is negligible, calculate the time taken for it to hit the ground.


Electrons moving in a beam have the same de Broglie wavelength as protons moving in a separate beam. The proton beam moves at a speed of 3.1 x 10^4 m/s. What is the speed of the electrons?


What are quarks?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences