Using Newton's law of universal gravitation, show that T^2 is proportional to r^3 (where T is the orbital period of a planet around a star, and r is the distance between them).

Newton's law of gravitation is: FG=(GMm)/(r2).First of all, it's a good idea to draw a diagram of the planet and star, labelling the directions of the centripetal force and and the planet's velocity in particular, along with anything else that helps visualise the question. We know that the equation for centripetal force is FC=mω2r (from circular motion). Since this centripetal force FC and the gravitational force FG point in the same direction (from the planet to the star), we can equate them!
This gives us: (GMm)/(r2) = mω2rSubstituting in ω=2π/T, we get: (GMm)/(r2) = (4π2mr)/(T2)We can see that the two 'm's cancel out, and the 'r's combine to make r3.Do a bit of rearranging: T2 =(4π2r3)/(GM)There it is! T2 is proportional to r3; this is known as Kepler's 3rd Law of planetary motion.

JB
Answered by Jake B. Physics tutor

4506 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Calculate the temperature rise of a mass due to energy transfer over time.


Light with a frequency of 200nm is shone on a sodium plate with a work function of 2.28eV and electrons start escaping the surface of the plate due to the photoelectric effect. What is the maximum kinetic energy of one of these electrons in eV?


A cart starts at rest and moves freely down a ramp without friction or air resistance and descends 8 meters vertically, what is its speed at the bottom?


How would our Sun's luminosity change if we increased its temperature 3 times?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning