Using Newton's law of universal gravitation, show that T^2 is proportional to r^3 (where T is the orbital period of a planet around a star, and r is the distance between them).

Newton's law of gravitation is: FG=(GMm)/(r2).First of all, it's a good idea to draw a diagram of the planet and star, labelling the directions of the centripetal force and and the planet's velocity in particular, along with anything else that helps visualise the question. We know that the equation for centripetal force is FC=mω2r (from circular motion). Since this centripetal force FC and the gravitational force FG point in the same direction (from the planet to the star), we can equate them!
This gives us: (GMm)/(r2) = mω2rSubstituting in ω=2π/T, we get: (GMm)/(r2) = (4π2mr)/(T2)We can see that the two 'm's cancel out, and the 'r's combine to make r3.Do a bit of rearranging: T2 =(4π2r3)/(GM)There it is! T2 is proportional to r3; this is known as Kepler's 3rd Law of planetary motion.

Answered by Jake B. Physics tutor

2800 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Alex's rocket lands after 4.56s and Billy's lands after 5.21s. What was the initial (maximum) vertical velocity of both of their rockets as they left the launchpad to 3s.f.?


What is the difference between internal energy, temperature, and heat?


What is the minimum height of a hill, so a ball of mass m falling from it can go through a loop of radius R?


Describe how a stationary wave is formed and some of its properties.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences