Find the derivative of f(x)=exp((tanx)^(1/2))

We use the chain rule. Let u(x)=exp(x), v(x)=x1/2, w(x) = tan(x).
Then f(x) = u(v(w(x))). So by the chain rule, f'(x) = u'(v(w(x)))*(v(w(x)))'.
u'(x) = exp(x).
By the chain rule, (v(w(x)))' = v'(w(x))w'(x).
v'(x) = x-1/2/2w'(x)= sec2(x)
So f'(x) = exp((tan(x)1/2))
(cos(x)/2)

LD
Answered by Luke D. Maths tutor

4092 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I express y=acosx+bsinx in the form y=Rcos(x-c)?


What is the general rule for differentiation?


Use the substitution u=cos(2x)to find ∫(cos(2x))^2 (sin(2x))^3dx


Factorise 6x^2 + 7x - 3=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning