Solve the following simultaneous equations: x^2 + y^2 = 12, x - 2y = 3

This is an example of quadratic simultaneous equations. We need to work out the value(s) of x OR y by rearranging one of the equations and then substituting it into the other equation. Once obtaining the x/y value, we have to substitute this value into one of the equations to work out the value of the other (e.g. x if we worked out y first).First, we have to rearrange the linear equation (the one with no x/y squared) to get x or y as the subject. For example, x = 2y + 3. Next, we substitute this equation into x^2 to get "(2y + 3)^2 + y^2 = 12".Now we can solve this equation to work out y. We do this by first expanding, simplifying the expression and then working out y by factorising if we can, using the formula or completing the square. So, we go from "(2y + 3)^2 + y^2 = 12" to "5y^2 + 12y - 3 = 0". As we cannot factorise this, we have to use the formula. Using this method, we get two values for y: 0.23 and -2.63.Finally, we substitute each y value into one of the original equations separately. It would be easiest to use the linear equation, so when substituting y = 0.23 into the equation, we get an x value of 3.456 and when substituting y = -2.63, we get an x value of -2.256.

IT
Answered by Imama Taiba N. Maths tutor

5225 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The formula to convert from degrees Fahrenheit to degrees Celsius is C=(F-32)*(5/9). If it is 32 degrees Celsius, what is the temperature in Fahrenheit?


How to find the gradient of a line?


How do you factorise x^2 - 4?


The length of a plank of wood is 80cm to the nearest 1cm. What is the largest and smallest possible value for the actual length of the plank?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences