How do I differentiate a function of x and y with respect to x?

To differentiate a function of x and y, you must differentiate x as you would ordinarily, and then differentiate y as you would normally, but multiply the differentiated term by dy/dx. For terms with x and y in them, you must apply the product rule. Once each term has been differentiated, collect all the terms with dy/dx as a multiplier on one side of the equation and all the other terms on the other. Then, factorise the dy/dx side, and divide by what's in the brackets to get dy/dx on its own. You will then have the solution. This is called implicit differentiation.

HM
Answered by Hannah M. Maths tutor

23280 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle of mass 0.5 kg is moving down a rough slope (with coefficient of friction = 0.2) inclined at 30 degrees to the horizontal. Find the acceleration of the particle. Use g = 9.8 ms^-2.


How do I integrate by parts?


Integrate 1/(5-2x) for 3≤x≤4


What is the signed area between the curve y = x^2 - 4 and the x-axis?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences