How do I differentiate a function of x and y with respect to x?

To differentiate a function of x and y, you must differentiate x as you would ordinarily, and then differentiate y as you would normally, but multiply the differentiated term by dy/dx. For terms with x and y in them, you must apply the product rule. Once each term has been differentiated, collect all the terms with dy/dx as a multiplier on one side of the equation and all the other terms on the other. Then, factorise the dy/dx side, and divide by what's in the brackets to get dy/dx on its own. You will then have the solution. This is called implicit differentiation.

HM
Answered by Hannah M. Maths tutor

28377 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I prove that an irrational number is indeed irrational?


How can I find the correct list of solutions whilst solving a trigonometry equation?


Find the derivation of (sinx)(e^2x)


Let p(x) = 30 x^3 -7 x^2 - 7 x + 2. Prove that (2x + 1) is a factor of p(x) and factorise p(x) completely.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning