How do I differentiate a function of x and y with respect to x?

To differentiate a function of x and y, you must differentiate x as you would ordinarily, and then differentiate y as you would normally, but multiply the differentiated term by dy/dx. For terms with x and y in them, you must apply the product rule. Once each term has been differentiated, collect all the terms with dy/dx as a multiplier on one side of the equation and all the other terms on the other. Then, factorise the dy/dx side, and divide by what's in the brackets to get dy/dx on its own. You will then have the solution. This is called implicit differentiation.

Answered by Hannah M. Maths tutor

20344 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you differentiate y=x^x?


Find the Co-ordinates and nature of all stationary points on the curve y=x^3 - 27x, and attempt to sketch the curve


I don’t think I’m smart enough for this course, should I drop it?


Find the integral of ((2(7x^(2)-xe^(-2x))-5)/x) . Given that y=27 at x=1, solve the differential equation dy/dx=((2(7x^(2)-xe^(-2x))-5)/-3x).y^(2/3) in terms of y.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences