The co-ordinates of P and Q respectively are (-9,7) and (11,12). M is on the line PQ such that PM:MQ = 2:3. L passes perpendicularly through M. What is the equation of L?

Draw a visual representation of P, Q, M and L.Work out the gradient of PQ to be 1/4.Know that the gradient of 2 lines perpendicular to each other multiplied is -1, therefore the gradient of L = -4. Work out the co-ordinates of M to be (-1,9).Know that y = mx + c where m = gradient and c = intercept.Substitute in the gradient of L and the co-ordinates of M to get c to equal 5.Answer: y = -4x + 5.

Answered by Varun A. Maths tutor

6481 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations 3x+2y=4 and 4x+5y=17 for x and y


Trigonometry Example.


a) A line passes through (0,9) and (3,12) write down the equation of this line . b) A line perpendicular to the line in part a passes through the point (3,14) write the equation of this line.)


How do I multiply fractions?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences