The equation of a curve is y = (x + 3)^2 + 5. Find the coordinates of the turning point.

We are asked to find the coordinates of the turning point of a line, and we should first remind ourselves of what this means. A turning point on a line is either a maximum or minimum point, or a point of inflection. (These may be easily represented on a graph). They are all points of zero gradient. When we are given the equation of a line and are asked to find an equation for the gradient, what do we do? We differentiate it!
So if y = (x + 3)^2 + 5, then dy/dx = 2 x (x + 3). (Here we used basic differentiation rules which can be revised if the student requires).
Because we are finding the points with zero gradient, we must put dy/dx = 0 which implies that 2 x (x + 3) = 0, which in turn implies that x = -3.
So we know our x-coordinate, but we must substitute this in to our equation of a line so that we can find the y-coordinate. y = (x + 3)^2 + 5, so at our turning point y = ((-3) + 3)^2 +5 which implies that y = 5.
So we have found that x = -3 and y = 5, and therefore the coordinates of the turning point are (-3, 5).

MS
Answered by Marnie S. Maths tutor

9810 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Express the equation x^2+6x-12 in the form (x+p)^2+q


There are 10 boys and 20 girls in a class. In a class test, the mean score of the boys is 77. The mean score of the girls is 80. What is the mean score of the whole class?


What is meant by the term specific heat capacity?


Complete Question won't fit here. Please see Explanation. Thanks.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences