Differentiate y= 2^x

Initially this looks unlike all the other differentiation questions and seems unsolvable. However the expression 2^x can be rewritten in an equivalent form that will allow us to use the differentiation rules we already know. We know that e^(ln(x)) is the same as x, consequently e^(ln(2^x)) is 2^x. We know how to differentiate e to the power of a function of x by using the chain rule. If y=e^u, where u= ln(2^x), (this can be rewritten as 2lnx) then we have dy/du= e^u and du/dx= ln2. Multiplying these together to get dy/dx= ln2e^u. The u has to be converted back to its x form, (u=ln(2^x)), dy/dx= ln22^x. As long as the first step is remembered the rest is just applying the differentiation rules we already know.

Answered by Max G. Maths tutor

7066 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the normal to the curve 2x^3+3xy+2/y=0 at the point (1,-1)


Solve the inequality |x - 2sqrt(2)| > |x - 4sqrt(2)|.


How to expand squared brackets?


Given that the curve y = 3x^2 + 6x^1/3 + (2x^3)/3x^1, find an expression for the gradient of the curve.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences