Differentiate y= 2^x

Initially this looks unlike all the other differentiation questions and seems unsolvable. However the expression 2^x can be rewritten in an equivalent form that will allow us to use the differentiation rules we already know. We know that e^(ln(x)) is the same as x, consequently e^(ln(2^x)) is 2^x. We know how to differentiate e to the power of a function of x by using the chain rule. If y=e^u, where u= ln(2^x), (this can be rewritten as 2lnx) then we have dy/du= e^u and du/dx= ln2. Multiplying these together to get dy/dx= ln2e^u. The u has to be converted back to its x form, (u=ln(2^x)), dy/dx= ln22^x. As long as the first step is remembered the rest is just applying the differentiation rules we already know.

Answered by Max G. Maths tutor

7217 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the inverse of f(x) = (3x - 6)/2


Find values of x in the interval 0<x<360 degrees. For which 5sin^2(x) + 5 sin(x) +4 cos^2(x)=0


The curve C is paramterised by the equations: x = 5t + 3 ; y = 2 / t ; t > 0 Find y in terms of x and hence find dy/dx


A curve is defined by the parametric equations x = 3 - 4t, and y = 1 + 2/t. Find dy/dx in terms of t.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences