Differentiate y= 2^x

Initially this looks unlike all the other differentiation questions and seems unsolvable. However the expression 2^x can be rewritten in an equivalent form that will allow us to use the differentiation rules we already know. We know that e^(ln(x)) is the same as x, consequently e^(ln(2^x)) is 2^x. We know how to differentiate e to the power of a function of x by using the chain rule. If y=e^u, where u= ln(2^x), (this can be rewritten as 2lnx) then we have dy/du= e^u and du/dx= ln2. Multiplying these together to get dy/dx= ln2e^u. The u has to be converted back to its x form, (u=ln(2^x)), dy/dx= ln22^x. As long as the first step is remembered the rest is just applying the differentiation rules we already know.

MG
Answered by Max G. Maths tutor

8167 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you differentiate (3x+cos(x))(2+4sin(3x))?


The line L1 has vector equation,  L1 = (  6, 1 ,-1  ) + λ ( 2, 1, 0). The line L2 passes through the points (2, 3, −1) and (4, −1, 1). i) find vector equation of L2 ii)show L2 and L1 are perpendicular.


A block of mass 5kg is on a rough slope inclined at an angle of 30 degrees to the horizontal, it is at the point of sliding down the slope. Calculate the coefficient of friction between the block and the slope.


Find the area between the curves C_1, C_2 and the lines x=0 and x=1, where C_1 is the curve y = x^2 and C_2 is the curve y = x^3.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning