Find the integral of 4/(1-x^2) dx:

The first thing to notice here is that the denominator of the integrand is a case of 'difference of two squares'. The integral, which I will call I, can be rewritten as the integral of 4/((1+x)(1-x)) dx. If you expand the brackets you will find the denominator gives (1-x2) as in the question. Now we can apply partial fractions to further simplify I. 4/((1+x)(1-x)) = A/(1+x) + B/(1-x) Multiply both sides by (1+x)(1-x). 4 = A(1-x) + B(1+x) Sub in x = -1 to eliminate B. 4 = 2A so A=2Sub in x = 1 to eliminate A. 4 = 2B so B=2 Now we can integrate using the fact that the integral of 1/y dy = lny + c. The integral of (2/(1+x) +2/(1-x))dx = 2ln(1+x) + 2ln(1-x) (-1) + c . There is a factor of -1 in the second term because it was (1-x). Factorise the 2 and use the subtraction of logs rule (lna - lnb = ln(a/b)), to give: I = 2ln((1+x)/(1-x)) + c

JP
Answered by Jemima P. Maths tutor

5657 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 2(x-1)/(x^2-2x-3) - 1/(x-3) as a fraction in its simplest form.


Given y=x^2(1+4x)^0.5, show that dy/dx=2x(5x+1)/((1+4x)^0.5)


two balls of similar size masses m and 2m are moving at speeds u and 2u along a frictionless plane, they collide head on and are reflected, assuming that the coefficient of restitution of this collision is 1, what the speeds are afterwards in u


A particle of mass 0.8 kg moving at 4 m/s rebounds of a wall with coefficient of restitution 0.3. How much Kinetic energy is lost?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning