Use integration by parts to find the integral of ln x by taking ln x as the multiple of 1 and ln x

For integration by parts, the integral is uv - ∫ u' v dx. First we take u = ln x and v' = 1. While we could have u and v' be the opposite at this stage, it becomes apparent later on that we can't do this because we would still need to integrate ln x. Differentiating u gives u' = 1/x (this is a derivative that has to just be learnt) and integrating v' gives v = x. Therefore the integral is x ln x - ∫ x(1/x) dx = x ln x - ∫ dx. So the integral of ln x is x ln x - x.

Answered by Jack C. Maths tutor

4045 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x) = x^3 + 3x^2 + 5. Find (a) f ′′(x), (b) ∫f(x)dx.


Solve the following simultaneous equations y + 4x + 1 = 0, y^2 + 5x^2 + 2x = 0


How to find y-intercept on a graphical calculator


What is the equation of the normal line to the curve y = 3x^3 - 6x^2 at the point (1, 4)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences