Solve the simultaneous equations to find the values of x and y: 3x + 5y = -4 and 10x - 4y = -34

Firstly we need to remove one of the variables. We can use the fact that y has different signs to do this.
3x + 5y = -4 multiplied by 4 gives: 12x + 20y = -16
10x - 4y = -34 multiplied by 5 gives: 50x - 20y = -170
If we add these together we get: 62x = -186
If we divide both sides by 62, this gives: x = -3
Substituting this back into the first equation gives: -9 + 5y = -4
Adding 9 to both sides: 5y = 5
Therefore, dividing both sides by 5 gives: y = 1
This can be checked by substituting these values into the second equation: -30 - 4 = -34
Therefore, as both sides equal -34, we know these values are correct.

Answered by Tutor112326 D. Maths tutor

4433 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve algebraically: 1) 6a + b = 16, 2) 5a - 2b = 19


Solve the equation p + 15 = 2(4p − 3)


How do you solve simultaneous equations?


All tickets to the movie theatres cost the same price. Jessica and Thomas pay £84 together. Jessica pays £38.5 for 11 tickets. How many does Thomas Buy?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences