Prove that sqrt(2) is irrational

First, let's assume that sqrt(2) is rational. That is, it can be expressed in the form a/b, where a and b are integers and the fraction is simplified as far as possible.
So we have sqrt(2) = a/b --> 2 = a2/b2 --> a2=2b2. Since b2 must also be an integer, doubling it to a2 must be an even number. Only even numbers square to give even numbers, so a is also even. Let a = 2n, then a2 = 2b2 = 4n2 --> b2 = 2n2. From this we can see that b2 is even, so b must be too. We've now established that both a and b are even, but this means that the original fraction wasn't simplified as far as possible. This is a contradiction, so we can conclude that the assumption that sqrt(2) is rational is incorrect.

Answered by Mark W. Maths tutor

3553 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

simplify (3x^2 - x - 2) / (x^2 - 1)


How to complete the square?


How do you differentiate using the chain rule?


How do you differentiate using the chain rule?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences