Find the equation of the tangent to y = 2x^2 + 7 at x = 3.

The first step here is to identify what to do. Differentiating the equation y = 2x^2 + 7 will result in dy/dx = 4x. Given that you know that x = 3, you can substitute x = 3 into 4x which gives you 4(3) = 12. Thus, you now know that the gradient is equal to 12 at the point x = 3. However, you are trying to find the equation of the tangent and so you use the equation y = mx + c to calculate the equation. You know that the values are m = 12, x = 3 but y and c are currently unknown. To find the value of y, you substitute x = 3 into the original equation of y = 2x^2 + 7 which gives you y = 25. Plug in the values into y = mx + c to find c and rearrange to find c. c = 25 - 36 = -11. Finally, putting all of these values together results in y = 12x - 11.

Answered by Danielle C. Maths tutor

2978 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: y = 4x^2 - 9x - 1 and y = 5 - 4x


Solve 4(x–5)=18


A bag with 750 balls is comprised of 300 red, 200 blue and 250 green. What is the probability of three green balls being in succession, providing the ball is put back between each turn.


Fully factorise the expression 14x^2y - 28xy^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences