How to differentiate a bracket raised to a power i.e. chain rule

Lets say the equation to be differentiated takes the following format y = (ax2+bx+c)n, to find dy/dx: (1) Make u equal the contents of the bracket, u=ax2+bx+c. (2) Substitute the contents of the bracket with u, y=un. (3) Differentiate y with respect to u, dy/du=nu(n-1). (4) Differentiate u with respect to x, du/dx=2ax+b. (5) Because dy/dx=(dy/du)(du/dx), we can derive. (6) dy/dx=(nu(n-1))(2ax+b). (7) Finally, substitute u with ax2+bx+c, dy/dx=(n(ax2+bx+c)(n-1))(2ax+b).

Answered by David F. Maths tutor

22050 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate 10x(x^1/2 - 2)dx


How do I integrate 3^x?


Differentiate the function y = cos(sin(2x))?


Line AB has equation 6x + y - 4 = 1. AB is perpendicular to the line y = mx + 1, find m.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences