How to differentiate a bracket raised to a power i.e. chain rule

Lets say the equation to be differentiated takes the following format y = (ax2+bx+c)n, to find dy/dx: (1) Make u equal the contents of the bracket, u=ax2+bx+c. (2) Substitute the contents of the bracket with u, y=un. (3) Differentiate y with respect to u, dy/du=nu(n-1). (4) Differentiate u with respect to x, du/dx=2ax+b. (5) Because dy/dx=(dy/du)(du/dx), we can derive. (6) dy/dx=(nu(n-1))(2ax+b). (7) Finally, substitute u with ax2+bx+c, dy/dx=(n(ax2+bx+c)(n-1))(2ax+b).

Answered by David F. Maths tutor

22679 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find the integral of 1+3 root x


Question shown in the answer section as a hyperlinked link.


y = 4x/(x^2+5). a) Find dy/dx, writing your answer as a single fraction in its simplest form. b) Hence find the set of values of x for which dy/dx < 0


Find the derivative with respect to x and the x-coordinate of the stationary point of: y=(4x^2+1)^5


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences