How to differentiate a bracket raised to a power i.e. chain rule

Lets say the equation to be differentiated takes the following format y = (ax2+bx+c)n, to find dy/dx: (1) Make u equal the contents of the bracket, u=ax2+bx+c. (2) Substitute the contents of the bracket with u, y=un. (3) Differentiate y with respect to u, dy/du=nu(n-1). (4) Differentiate u with respect to x, du/dx=2ax+b. (5) Because dy/dx=(dy/du)(du/dx), we can derive. (6) dy/dx=(nu(n-1))(2ax+b). (7) Finally, substitute u with ax2+bx+c, dy/dx=(n(ax2+bx+c)(n-1))(2ax+b).

DF
Answered by David F. Maths tutor

26196 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find both stationary points for y= 4x^(3)-3x^(2)-60x+24. Also find the nature of those points.


The function f has domain (-∞, 0) and is defines as f(x) = (x^2 + 2)/(x^2 + 5) (here ^ is used to represent a power). Show that f'(x) < 0. What is the range of f?


Differentiate the following: y=sin(x^2+2)


A curve f(x,y) is defined by sin(3y)+3ye^(-2x)+2x^2 = 5. Find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning