Solve the differential equation dy/dx = 6xy^2 given that y=1 when x=2.

This equation can be solved using separation of variables. Firstly we rearrange the equation so that all of the y's are on the left hand side and all of the x's are on the right: 1/y2* dy = 6x * dx. Then we integrate both sides to get the following equation: -1/y = 3x2+C. To find the value of C, we plug y=1 and x=2 into the equation and solve it: -1/1 = 3*22+C => C = -13.If we rearrange the equation for y then the final answer is y=1/(13-3x2).

Answered by Will S. Maths tutor

5327 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A straight line passes through the point (2,1) and has a gradient of 3. Find the co-ordinates of the points where this line intersects the axes


A curve has equation y = (x-1)e^(-3x). The curve has a stationary point M. Show that the x-coordinate of M is 4/3.


Differentiate y = 4ln(x)x^2


Differentiate the following: 4x^3 + sin(x^2)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences