Solve the differential equation dy/dx = 6xy^2 given that y=1 when x=2.

This equation can be solved using separation of variables. Firstly we rearrange the equation so that all of the y's are on the left hand side and all of the x's are on the right: 1/y2* dy = 6x * dx. Then we integrate both sides to get the following equation: -1/y = 3x2+C. To find the value of C, we plug y=1 and x=2 into the equation and solve it: -1/1 = 3*22+C => C = -13.If we rearrange the equation for y then the final answer is y=1/(13-3x2).

Answered by Will S. Maths tutor

5968 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify the following C4 question into it's simplest form: (x^4-4x^3+9x^2-17x+12)/(x^3-4x^2+4x)


Integrate the function (3x+4)^2 using methods of expansion and substitution


At what point(s) do lines y = x^2 - 5x - 14 and y = 3x + 2 intersect? Write your answer in surd form


The quadratic equation 2x^2+8x+1=0 has roots a and b. Write down the value of a+b and ab and a^2+b^2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences