Find the x and y coordinates of the turning points of the curve 'y = x^3 - 3x^2 +4'. Identify each turning point as either a maximum or a minimum.

The first part of the problem is solved by differentiating once and equating this to zero:
y = x^3 - 3x^2 +4 .dy/dx = 3x^2 - 6x .dy/dx = x(3x - 6) .
At the turning points;
x(3x - 6) = 0 (turning points occur where the gradient, dy/dx, equals zero) .
Hence, x = 0 or 2.
Inputting these x-values into the original equation yields the respective y-coridnates or the turning points. The locations are (0, 4) and (2, 0).
The nature of the turning points can be determined by finding the second derivative of the original equation:
d^2y/dx^2 = 6x - 6 .
At (0, 4), d^2y/dx^2 = -6 .At (2, 0), d^2y/dx^2 = 6 .
Therefore (0, 4) is a maximum and (2, 0) is a minimum (positive second derivative --> minimum, negative second derivative --> maximum).

RM
Answered by Robbie M. Maths tutor

11987 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the indefinite integral ∫(x^2)*(e^x) dx (Edexcel C4 June 2013 Question 1)


A particle of mass 0.5 kg is moving down a rough slope (with coefficient of friction = 0.2) inclined at 30 degrees to the horizontal. Find the acceleration of the particle. Use g = 9.8 ms^-2.


Differentiaate the folowing equation with respect to x: y=4x^3-3x^2+9x+2


What is the integral of x^(3)e^(x) with respect to x?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences