Express '6cos(2x) +sin(x)' in terms of sin(x).

6cos(2x) +sin(x).Using the double angle formula for cosine (or otherwise), cos(2x) = cos(x)cos(x) - sin(x)sin(x) .cos(2x) = cos^2(x) - sin^2(x) .Hence, 6cos(2x) +sin(x) = 6(cos^2(x) - sin^2(x)) + sin(x). Now use the trigonometric identity 1 = cos^2(x) + sin^2(x).6(cos^2(x) - sin^2(x)) + sin(x) = 6((1-sin^2(x)) - sin^2(x)) + sin(x) .6((1-sin^2(x)) - sin^2(x)) + sin(x) = 6 (1 - 2sin^2(x)) +sin(x) .Therefore, 6cos(2x) +sin(x) = 6 + sin(x) -12sin^2(x).6cos(2x) +sin(x) = (4sin(x) − 3)*(3sin(x) + 2) 


Answered by Robbie M. Maths tutor

4498 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate with respect to x y=(x^3)ln2x


Show (2-3i)^3 can be expressed in the form a+bi where a and b are negative integers.


Given a quadratic equation, how do I find the coordinates of the stationary point?


Give the first and second derivative of the function f(x) = 5/x - 9x + 4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences