Find dy/dx where y= x^3(sin(x))

To differentiate y, we must used the product rule.The product rule is d/dx [f(x)g(x)] = f'(x)g(x) + g'(x)f(x)So here, we let f(x)= x^3 and g(x)= sin(x)Then, f'(x)= 3x^2 and g'(x) = cos(x)Then substituting these into the product rule formula, we get dy/dx = (3x^2)sin(x) + cos(x)x^3We can simplify the answer by factorising out x^2 :dy/dx= x^2[3sin(x) + xcos(x)]

KC
Answered by Kajal C. Maths tutor

8453 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C has equation y = (2 - x)(1 + x) + 3 . A line passes through the point (2, 3) and the point on C with x-coordinate 2 + h . Find the gradient of the line, giving your answer in its simplest form.


How would you integrate ln x


Given f(x): 2x^4 + ax^3 - 6x^2 + 10x - 84, and knowing 3 is a root of f(x), which is the value of a?


Integrate Sin(2X)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning