Let f(x)=e^x sin(x^2). Find f'(x)

Since f(x) is a product of the two functions e^x and sin(x^2), we can use the product rule which states that if f(x)=g(x)h(x), then f'(x)=g'(x)h(x)+g(x)h'(x). Let g(x)=e^x and h(x)=sin(x^2). Since the differential of e^x is e^x, g'(x)h(x)=e^x sin(x^2), which is the first part of f'(x). For the second part of f'(x), g(x)h'(x), e^x is not differentiated, but we must use the chain rule to differentiate sin(x^2). The chain rule states that if h(x)=u(v(x)), then h'(x)=v'(x)u'(v(x)). Let u(x)=sin(x) and v(x)=x^2, differentiating x^2 using the power rule gives v'(x)=2x, and differentiating sin(x) gives u'(x)=cos(x), so u'(v(x))=cos(x^2), and h'(x)=v'(x)u'(v(x))=2xcos(x^2). This means that g(x)h'(x)=e^x 2xcos(x^2), so f'(x)=e^x sin(x^2)+e^x 2xcos(x^2).

MB
Answered by Michael B. Maths tutor

6282 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

curve C with parametric equations x = 4 tan(t), y=5*3^(1/2)*sin(2t). Point P lies on C with coordinates (4*3^(1/2), 15/2). Find the exact value of dy/dx at the point P.


A mass of 3kg rests on a rough plane inclined at 60 degrees to the horizontal. The coefficient of friction is 1/5. Find the force P acting parallel to the plane applied to the mass, in order to just prevent motion down the plane.


Find the equation of the tangent to the curve y = (2x -3)^3 at the point (1, - 1), giving your answer in the form y = mx + c.


Integrate sin^2(x) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning