Given the equation 0=5x^2+3xy-y^3 find the value of dy/dx at the point (-2,2)

To answer this we will use implicit differentiation with respect to x. So start by differentiating each term. On the left hand side 0 differentiates to 0. On the right hand side 5x2 differentiates to 10x. By using the product rule and implicit differentiation 3xy differentiates to 3x dy/dx +3y. -y3 differentiates to -3y2 dy/dx by implicit differentiation. So the whole differentiated equation is 0=10x+3x dy/dx +3y - 3y2 dy/dx. Then rearrange the equation so all terms containing dy/dx are on one-side of the equals sign and the other terms are on the other-side so 3y2 dy/dx -3x dy/dx = 10x+3y. Then take out a factor of dy/dx from the left hand side giving dy/dx(3y2-3x)=10x+3y. Finally, divide each side by 3y2-3x to get an equation in terms of dy/dx, dy/dx=(10x+3y)/(3y2-3x). Then plug in the co-ordinates given above to obtain dy/dx=-7/9

Answered by Holly W. Maths tutor

2973 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A hollow sphere of radius r is being filled with water. The surface area of a hemisphere is 3pi*r^2. Question: When the water is at height r, and filling at a rate of 4cm^3s^-1, what is dS/dT?


Do the circles with equations x^2 -2x + y^2 - 2y=7 and x^2 -10x + y^2 -8y=-37 touch and if so, in what way (tangent to each other? two point of intersection?)


Show using mathematical induction that 8^n - 1 is divisible by 7 for n=1,2,3,...


Find the derivative of the function f:(0,oo)->R, f(x)=x^x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences