Find the equation of the tangent to: y = X^2 + 3x + 2 at the point (2,12)

(1) Find the gradient using differentiation (2) If the gradient at (x1,y1) is m,y - y1 = m(x - x1)
(1) We differentiate the given equation:dy/dx = 2x + 3
Then, find the gradient at (2,12). Sub x= 2 into dy/dx = 2x + 3 dy/dx = 2(2) + 3dy/dx = 7
(2) y-12 = 7(x-2) y-12=7x-14 y=7x-2

SC
Answered by Samuel C. Maths tutor

4173 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you differentiate using the chain rule?


(A) express 4^x in terms of y given that 2^x = y. (B) solve 8(4^x ) – 9(2^x ) + 1 = 0


Why do you differentiate in optimisation questions?


Using methods of substitution solve the following simultaneous equations: y - 2x - 1 = 0 and 4x^2 + y^2 - 25 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning