How do you find stationary points of an equation, eg. y=x^2+3x+2

Stationary points of an equation are found where the gradient of the tangent at this point equals zero. A diagram can illustrate this. To find them differentiate the given equation (which gives the gradient) and set this to zero. eg. dy/dx = 2x+32x+3=0x=-3/2Plug this back into the equation of the line to find the y valuey=(-3/2)^2 + 3(-3/2) +2y= -1/4Stationary point is (-3/2, -1/4)To find the nature of this stationary point, find the second derivative, plug in your x value. If the value of the second derivative if positive, the point is a minimum, negative means a maximum.

Answered by Ellie C. Maths tutor

2592 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

1. The curve C has equation y = 3x^4 – 8x^3 – 3 (a) Find (i) d d y x (ii) d d 2 y x 2 (3) (b) Verify that C has a stationary point when x = 2 (2) (c) Determine the nature of this stationary point, giving a reason for your answer.


Differentiate the equation 4x^5 + 2x^3 - x + 2


The polynomial f(x) is define by f(x) = 3x^3 + 2x^2 - 8x + 4. Evaluate f(2).


Simplify the following expression to a fraction in its simplest form: [(4x^2 + 6x)/(2x^2 - x -6)] - [(12)/(x^2 - x - 2)]


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences