Prove the change of base formula for logarithms. That is, prove that log_a (x) = log_b (x) / log_b (a).

Firstly, recall the definition of a logarithm: if y = loga(x), then this means that y is the power you have to raise a to, to get x, that is ay = x.Now, we want to introduce a new base, b. Let's take log to base b of both sides of the above equation. We get logb(ay) = logb(x). But remember our rules of logarithms -- we know that ylogb(a) = logb(ay), so we get that ylogb(a) = logb(x).Lastly, divide both sides by logb(a), to obtain: y = logb(x)/logb(a). Aha! Remember we started off by saying that y = loga(x). Therefore, loga(x) = logb(x)/logb(a), and our proof is complete!

Answered by Tom H. Maths tutor

9417 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the gradient of a curve?


give the coordinates of the stationary points of the curve y = x^4 - 4x^3 + 27 and state with reason if they are minumum, maximum, or points of inflection.


How do I find the derivative of two functions multiplied by each other?


The cubic polynomial f(x) is defined by f(x) = 2x^3 -7x^2 + 2x + 3. Given that (x-3) is a factor of f(x), express f(x) in factorised form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences